Convergence of a symmetric MPFA method on quadrilateral grids
نویسنده
چکیده
This paper investigates different variants of the multipoint flux approximation (MPFA) O-method in 2D, which rely on a transformation to an orthogonal reference space. This approach yields a system of equations with a symmetric matrix of coefficients. Different methods appear, depending on where the transformed permeability is evaluated. Midpoint and corner-point Wheeler was partially supported by NSF grant DMS 0411413 and the DOE grant DE-FGO2-04ER25617. Yotov was supported in part by the DOE grant DE-FG02-04ER25618, the NSF grant DMS 0411694 and the J. Tinsley Oden Faculty Fellowship, The University of Texas at Austin. I. Aavatsmark (B) · G. T. Eigestad · R. A. Klausen Centre for Integrated Petroleum Research, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway e-mail: [email protected] G. T. Eigestad e-mail: [email protected] R. A. Klausen Centre of Mathematics for Applications, University of Oslo, Mail: CMA, P.O. Box 1053 Blindern, 0316 Oslo, Norway e-mail: [email protected] M. F. Wheeler Institute for Computational Engineering and Sciences (ICES), Department of Aerospace Engineering & Engineering Mechanics, and Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78712, USA e-mail: [email protected] I. Yotov Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA e-mail: [email protected] evaluations are considered. Relations to mixed finite element (MFE) methods with different velocity finite element spaces are further discussed. Convergence of the MPFA methods is investigated numerically. For corner-point evaluation of the reference permeability, the same convergence behavior as the O-method in the physical space is achieved when the grids are refined uniformly or when grid perturbations of order h2 are allowed. For h2-perturbed grids, the convergence of the normal velocities is slower for the midpoint evaluation than for the corner-point evaluation. However, for rough grids, i.e., grids with perturbations of order h, contrary to the physical space method, convergence cannot be claimed for any of the investigated reference space methods. The relations to the MFE methods are used to explain the loss of convergence.
منابع مشابه
Convergence of Multi Point Flux Approximations on Quadrilateral Grids
This paper presents a convergence analysis of the multi point flux approximation control volume method, MPFA, in two space dimensions. The MPFA version discussed here is the so–called O–method on general quadrilateral grids. The discretization is based on local mappings onto a reference square. The key ingredient in the analysis is an equivalence between the MPFA method and a mixed finite eleme...
متن کاملA multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra
In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields a positive definite cell-centered system for the pressure by eliminating local velocities. The method is shown to be accurate on highly distorted r...
متن کاملConvergence of Multi-point Flux Approximations on General Grids and Media
The analysis of the Multi Point Flux Approximation (MPFA) method has so far relied on the possibility of seeing it as a mixed finite element method for which the convergence is then established. This type of analysis has been successfully applied to triangles and quadrilaterals, also in the case of rough meshes. The MPFA method has however much in common with another well known conservative met...
متن کاملA Symmetric Finite Volume Element Scheme on Quadrilateral Grids and Superconvergence
A symmetric finite volume element scheme on quadrilateral grids is established for a class of elliptic problems. The asymptotic error expansion of finite volume element approximation is obtained under rectangle grids, which in turn yields the error estimates and superconvergence of the averaged derivatives. Numerical examples confirm our theoretical analysis.
متن کاملA Mass Conservative Method for Numerical Modeling of Axisymmetric flow
In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...
متن کامل